Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
Energy Build ; 294: 113204, 2023 Sep 01.
Article in English | MEDLINE | ID: covidwho-2327939

ABSTRACT

The COVID19 pandemic has impacted the global economy, social activities, and Electricity Consumption (EC), affecting the performance of historical data-based Electricity Load Forecasting (ELF) algorithms. This study thoroughly analyses the pandemic's impact on these models and develop a hybrid model with better prediction accuracy using COVID19 data. Existing datasets are reviewed, and their limited generalization potential for the COVID19 period is highlighted. A dataset of 96 residential customers, comprising 36 and six months before and after the pandemic, is collected, posing significant challenges for current models. The proposed model employs convolutional layers for feature extraction, gated recurrent nets for temporal feature learning, and a self-attention module for feature selection, leading to better generalization for predicting EC patterns. Our proposed model outperforms existing models, as demonstrated by a detailed ablation study using our dataset. For instance, it achieves an average reduction of 0.56% & 3.46% in MSE, 1.5% & 5.07% in RMSE, and 11.81% & 13.19% in MAPE over the pre- and post-pandemic data, respectively. However, further research is required to address the varied nature of the data. These findings have significant implications for improving ELF algorithms during pandemics and other significant events that disrupt historical data patterns.

2.
Applied Sciences ; 12(22):11870, 2022.
Article in English | MDPI | ID: covidwho-2123503

ABSTRACT

Deep learning is an obvious method for the detection of disease, analyzing medical images and many researchers have looked into it. However, the performance of deep learning algorithms is frequently influenced by hyperparameter selection, the question of which combination of hyperparameters are best emerges. To address this challenge, we proposed a novel algorithm for Adaptive Hyperparameter Tuning (AHT) that automates the selection of optimal hyperparameters for Convolutional Neural Network (CNN) training. All of the optimal hyperparameters for the CNN models were instantaneously selected and allocated using a novel proposed algorithm Adaptive Hyperparameter Tuning (AHT). Using AHT, enables CNN models to be highly autonomous to choose optimal hyperparameters for classifying medical images into various classifications. The CNN model (Deep-Hist) categorizes medical images into basic classes: malignant and benign, with an accuracy of 95.71%. The most dominant CNN models such as ResNet, DenseNet, and MobileNetV2 are all compared to the already proposed CNN model (Deep-Hist). Plausible classification results were obtained using large, publicly available clinical datasets such as BreakHis, BraTS, NIH-Xray and COVID-19 X-ray. Medical practitioners and clinicians can utilize the CNN model to corroborate their first malignant and benign classification assessment. The recommended Adaptive high F1 score and precision, as well as its excellent generalization and accuracy, imply that it might be used to build a pathologist's aid tool.

3.
Mathematics ; 10(22):4267, 2022.
Article in English | MDPI | ID: covidwho-2116237

ABSTRACT

The new COVID-19 variants of concern are causing more infections and spreading much faster than their predecessors. Recent cases show that even vaccinated people are highly affected by these new variants. The proactive nucleotide sequence prediction of possible new variants of COVID-19 and developing better healthcare plans to address their spread require a unified framework for variant classification and early prediction. This paper attempts to answer the following research questions: can a convolutional neural network with self-attention by extracting discriminative features from nucleotide sequences be used to classify COVID-19 variants? Second, is it possible to employ uncertainty calculation in the predicted probability distribution to predict new variants? Finally, can synthetic approaches such as variational autoencoder-decoder networks be employed to generate a synthetic new variant from random noise? Experimental results show that the generated sequence is significantly similar to the original coronavirus and its variants, proving that our neural network can learn the mutation patterns from the old variants. Moreover, to our knowledge, we are the first to collect data for all COVID-19 variants for computational analysis. The proposed framework is extensively evaluated for classification, new variant prediction, and new variant generation tasks and achieves better performance for all tasks. Our code, data, and trained models are available on GitHub (https://github.com/Aminullah6264/COVID19, accessed on 16 September 2022).

4.
Diagnostics (Basel) ; 12(11)2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2109977

ABSTRACT

The outbreak of the novel coronavirus disease COVID-19 (SARS-CoV-2) has developed into a global epidemic. Due to the pathogenic virus's high transmission rate, accurate identification and early prediction are required for subsequent therapy. Moreover, the virus's polymorphic nature allows it to evolve and adapt to various environments, making prediction difficult. However, other diseases, such as dengue, MERS-CoV, Ebola, SARS-CoV-1, and influenza, necessitate the employment of a predictor based on their genomic information. To alleviate the situation, we propose a deep learning-based mechanism for the classification of various SARS-CoV-2 virus variants, including the most recent, Omicron. Our model uses a neural network with a temporal convolution neural network to accurately identify different variants of COVID-19. The proposed model first encodes the sequences in the numerical descriptor, and then the convolution operation is applied for discriminative feature extraction from the encoded sequences. The sequential relations between the features are collected using a temporal convolution network to classify COVID-19 variants accurately. We collected recent data from the NCBI, on which the proposed method outperforms various baselines with a high margin.

5.
Mathematical Problems in Engineering ; : 1-16, 2022.
Article in English | Academic Search Complete | ID: covidwho-1759502

ABSTRACT

The COVID-19 data is critical to support countries and healthcare organizations for effective planning and evidence-based practices to counter the pressures of cost reduction, improved coordination, and outcome and produce more with less. Several COVID-19 datasets are published on the web to support stakeholders in gaining valuable insights for better planning and decision-making in healthcare. However, the datasets are produced in heterogeneous proprietary formats, which create data silos and make data discovery and reuse difficult. Further, the data integration for analysis is difficult and is usually performed by the domain experts manually, which is time-consuming and error-prone. Therefore, an explicit, flexible, and widely acceptable methodology to represent, store, query, and visualize COVID-19 data is needed. In this paper, we have presented the design and development of the Linked Open COVID-19 Data system for structuring and transforming COVID-19 data into semantic format using explicitly developed ontology and publishing on the web using Linked Open Data (LOD) principles. The key motivation of this research is the evaluation of LOD technology as a potential option and application of the available Semantic Web tools (i.e., Protégé, Excel2RDF, Fuseki, Silk, and Sgvizler) for building LOD-based COVID-19 information systems. We have also underpinned several use-case scenarios exploiting the LOD format of the COVID-19 data, which could be used by applications and services for providing relevant information to the end-users. The effectiveness of the proposed methodology and system is evaluated using the system usability scale and descriptive statistical methods and results are found promising. [ FROM AUTHOR] Copyright of Mathematical Problems in Engineering is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

SELECTION OF CITATIONS
SEARCH DETAIL